PHYSICAL REVIEW E

VOLUME 50, NUMBER 3

SEPTEMBER 1994
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The dynamics of first-order phase transitions are investigated. In many cases, three phases can occur
simultaneously, with a finite layer of stable or metastable phases forming at the surface. We present a
theory for the formation and growth of metastable phases in planar and spherical geometry. The
dynamical equations are based on the time-dependent Landau-Ginzburg equation and can be solved
analytically. An exponential interaction term between interfaces is shown to occur and acts to stabilize
the metastable surface film. The conditions on the exterior parameters for the appearance of dynamic or

static metastable states are given.

PACS number(s): 64.60.My

I. INTRODUCTION

Progress in experimental techniques has led to new re-
sults on surface transition phenomena and the papers
published on the subject are numerous. For example, ob-
servation of the atomic structure of a metallic cluster was
possible by scanning tunneling microscopy [1] or, using
light scattering, the front velocity during a phase transi-
tion was measured in a binary fluid mixture [2]. From a
theoretical point of view, the Ginzburg-Landau equation
based on an expansion of the free energy in a system
specific order parameter is often used to obtain a qualita-
tive understanding of these phenomena. Metiu, Ki-
tahara, and Ross [3] have shown that this model can be
derived from the master equation and that front propaga-
tion for a steady-state solution is simple to calculate. In
this case, the velocity of the propagating front is directly
proportional to the undercooling. Often only the static
solution for coexisting phases is considered [4], and a
mechanical analogy in terms of a fictive Hamiltonian is
possible. Among the first to invoke interaction between
interfaces, Meister and Muller-Krumbhaar [5] presented
a version of “dynamical disordering” leading to a diver-
gence of the width of the propagating interface for a sys-
tem undergoing a phase transition between two states.
Recently, in a numerical study, Bechhoefer, Lowen, and
Tuckerman [6] proposed an alternative dynamical mech-
anism for the production of metastable states. In the
present work, we will show how a generalization of this
result is possible from the study of the dynamical split-
ting in a nonequilibrium version of surface melting and
wetting.

We consider a system undergoing a first-order phase
transition between two states in the presence of an in-
termediary metastable phase. In a first step, we present

an analytical solution of the dynamical problem which is
J

afs
df, _|dn?
an |dfy
dn~

=n(n—>b,)[n—(1+8)] for n(z)<1,
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then extended by introduction of new external parame-
ters. The study of the influence of these parameters on
the propagating interface between two phases will lead to
the definition of conditions necessary for the appearance
of the metastable phase. An interaction term between the
two interfaces is shown to occur and an alternative for-
malism can be defined, which allows simple analytical
solutions and a different physical understanding of this
type of phenomenon. In the conclusion we will give some
applications and extensions of the model.

II. ANALYTICAL SOLUTION

We first study the possibility of formation of an in-
termediary metastable phase during a phase transition be-
tween two states. We solve for the space-time evolution
of a nonconserved order parameter n(z,t). The most
probable evolution follows the time-dependent
Ginzburg-Landau (TDGL) equation. For nucleation on a
plane (space coordinate z), and, for simplicity, the mobili-
ty and elastic constant set to 1, n(z,?) is a solution of the
equation

S0 (1)

The potential f,(n) is a three-well potential represent-
ing three states of the system denoted by n =0, 1, and 2.
A steady-state solution exists describing the propagation
with constant velocity vy, of the front separating the
states n =2 at z— — o and n =0 at z— + «. On trans-
formation of the variable z —z —v, we write (1) as

d’n ” gﬁ_dfo=0
dz? % dz dn

The following potential is used:

(2)

=[n—(1—8)|(n—1.4)(n—2) for n(z)>1.
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Introducing a free parameter § =0, f(n) is split into
two double-well potentials for which solutions of Eq. (2)
are well known [7]. For a positive 8, the potential is a
three-well potential and b, is a control parameter which
determines the free energy difference between the states
n=0 and n=1 and 2. The other unstable state is taken
at n = 1.4 to assure metastability of the n =1 state. If we
assume b; to be related to the temperature variation,
b,=b,(T), then b, =0.6 corresponds to the coexistence
temperature between the states O and 2 and b,=0.5 to
the coexistence temperature between the states O and 1.
In the following we vary b, in the range 0.6>b,; where
the state 2 is the stable state of the system. We now solve

dn*¥ dn¥® df f
;v T
dz dz dn

=0, 4)

with v =v,, for n(z)>1 and v =vy, for n(z)<1. vy and

v, are the front velocities associated with the solutions
nt(z,t) and n (2,0 for the following boundary condi-
tions:

lil}'_l (n*t)=0, 1_im(n+)=1+a, (5a)
liT (n7)=1-8, lim(n~)=2. (5b)

The solutions, plotted in Fig. 1, are well known:

n+(z)=—17:i(;8_? forz>0o0r n(z)<1, (6a)
1+e o
n(2)=(1—8)+ — 42
14+e 2

forz<0or n(z)>1, (6b)

where
k=%=l'§:—5, oy =1+8—2b, , v;,=0.2—5,

&, being the characteristic length of an independent inter-
face.

The two interfaces are localized at z,, and z,,, respec-
tively. Continuity at z=0 of n*, n ™, and their deriva-
tives implies

zOl=_—_=—212 . (7)

z

212 0 701
FIG. 1. 20 profile plotted for §=0.15. The full line

represents the front between phases 2 and 0, composed by over-
lapping of 21 and 10 solutions.

4 foln) A fo(n)

b1 > bic b1 <bic

0 1-8 1+8 2 0 1 2

FIG. 2. Potential f,(n) plotted for two values of the control
parameter b;. For b, > b, a discontinuity in the derivative of
fo(n) occurs at n=1. For b, <b,., the potential is a common
three-well potential.

The two interfaces must remain at constant relative dis-
tance for constant propagation (with velocity vy,). The
free parameter § is fixed by the condition vy, =v,;, =v;,.

b1_0.4 for bl >04 Py

3=10 for b, <0.4 .

(8)
As we can see in Fig. 1, and as confirmed by Eq. (7), the
present solution is not possible for § <0. For b, <0.4, we
fix 8 to 0 and define a critical value of the model parame-
ter b, =b,.,=0.4. The potential is plotted for two values
of b, near b, in Fig. 2. For b, > b,, we obtain an inter-
face between the states 0 and 2 with a constant velocity
Vg =0.6—b; and an n =1 plateau of width zy; —z,,=¢.
For b, —b,. the width of the n =1 front diverges. For
b, <b,., steady-state propagation of a 02 front is no
longer possible. We obtain two independent 01 and 12
profiles with velocities vy, > v, so that a macroscopic re-
gion of metastable phase is created. The numerical re-
sults on dynamical splitting are confirmed (Fig. 3) [6].
The width of the front £=zy; —z,, shows a logarithmic
divergence for b, —b,., as predicted [5] in the case of
short range interactions:

—21n(b1—blc)
§=201_212=—’k—_ .

The further b lies from the critical value, the smaller the
width of the front.

b1 bII c

FIG. 3. Velocities of the steady-state solutions: the thick line
is for propagation of the 02 front, the dashed line for the 10
front, and the full line, the 21 front. Below the critical point
b,., the 02 front ceases to exist.
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III. EFFECT OF MOBILITY
AND OF EXTERNAL CONTROL PARAMETERS

We now investigate the effect of the mobility which
will enhance dynamical splitting and the production of
metastable states. Equation (1) is then (elastic constant
again set to 1)

1 dn_d*n_dfo
I'(n) dt dz*? dn

)

F. CELESTINI AND A. ten BOSCH 30

I'(n) is the mobility of the system which is assumed to be
a function of the order parameter, here taken as a step
function,

Iy for n(z)<n; ,

Tn)= I, for n;<n(z)<2.

We also use a more general form of potential which al-
lows variation of three external model parameters
b 1» b 2 n;:

(10)

dfq
" =n*(nt—b;n)[nt—(n;+8)] forz>0,
df, |dn
dn | dfg
" df(‘)‘ =[nt—(n;—8))[n*—n;—b,(2—n;))(n"—2) forz<0.
n

n; is the order parameter value for the metastable state,
and b, is a second control parameter which fixes the en-
ergy difference between the states n =n; and n =2. De-
pending on the system studied, b, can be related to the
pressure b, =b,(P) or to the pressure and the tempera-
ture b, =b,(P,T)=b,(P,b,). At b,=0.5 the free ener-
gy has the same value for the two states n =1 and 2. We
will vary b, in the range 0 < b, <0.5 to conserve metasta-
bility of the intermediary state n =n;. The same method
described above is used to calculate the 02 front,

n,+6

+
n(z)=
k+(z-zm) ’

(11a)
1+e
6—n;+2

kT (z—zy,)

n~(z)=(n;—8)+ (11b)

1+e
The 02 front exists only for positive values of 5,
8— Fo(znibl _n; )+ F2(2—n,- +2nib2 _4b2 )
Iy+T, ’

We study the influence of the parameters b,,n; and the
ratio I'y/T", on the existence of the 02 front and on the
possibility of producing a dynamic metastable state.

In Fig. 4, we plot the (b,,b,) phase diagram and show

b1
A

Phase 0

Phase 2

Phase 1

b2

T
1

FIG. 4. Phase diagram for the system. We show the different
zones of stability for the three states.

f

the three respective zones of stability for the three states.
We first examine the influence of the second control pa-
rameter b, on dynamical splitting. We set n;=1,
I,=T,=1, and plot in Fig. 5 the boundary for the ex-
istence of a 02 front. If the O phase is quenched to below
this boundary, the 02 front will split and the metastable 1
phase propagates separately and faster than the stable 2
phase. For b,—0.5 the relative energy between the
states 2 and 1 is reduced. The minimum ‘“‘jump” in con-
trol parameter space decreases as b, tends to 0.5, as ex-
pected when the two states are close in energy.

We explore the influence of the value of the metastable
state n;, setting the mobilities to 1. In Fig. 6 we plot the
boundary for existence of an 02 interface for different
values of n;. On increasing the n; value, the minimum
jump in b, decreases and the zone of existence of a
separate intermediate state is enlarged. If n; <1 and for
values of b, <b,, with b, =(1—n;)/(2—n;), the 02 front
will never split. We see here that if the metastable state is
higher in energy than the stable 2 state and the value of
the order parameter of the metastable state is far re-
moved from the value of the stable 2 state, dynamical

b1

1 <

b2

0.5

FIG. 5. T\=I';=1 and n;=1. The thick line represents the
boundary for the existence of the 02 front. Two different
minimum “jumps” necessary to produce a distinct metastable
state are plotted. When the 1 and 2 states are close in energy
(62—0.5), the amount of quenching is reduced.



50 IMPORTANCE OF INTERFACIAL COUPLING ON THE . .. 1839

b2

ba 0.5

FIG. 6. I',=T;=1. Two boundaries for existence of the 02
interface are plotted for two different values of n;. An increase
in the value of n; enlarges the zone for appearance of dynamical

splitting. For values of n; <1 and b, <b,, we see that dynami-
cal splitting is not possible.

splitting is not possible.

Finally we study the influence of the mobility. For
n;=1 we plot in Fig. 7 the three boundaries for three
values of the ratio R=I,/T";>1 which correspond to
physical situations (for example, the O state is a liquid and
the 2 state is a solid with crystalline order and a mobility
several orders of magnitude smaller than in the liquid).
An increase in the value of R decreases the change of
external parameters necessary for appearance of the in-
termediary phase. For high values of R, the boundary
tends to the line b, =0.5, which corresponds to the tran-
sition between the 0 and 1 states. The calculation of the
independent velocities shows that v, is proportional to
'y and v, to I',. When the 02 front splits into two in-
dependent fronts with velocities vy, >>v,,, the creation of
a metastable phase is facilitated. Propagation in a non-
perfect medium can lead to effective velocities vy, and
vy, Which are, for example, a function of the defect con-
centration. We can expect blocking of the 12 front prop-

A b1

b2

O..5
FIG. 7. n;=1. Three different boundaries are plotted for

three different values of the ratio R =T',/T,. An increase of R
acts to reduce the minimum quenching.

agating with a low v, value whereas the 10 front contin-
ues to propagate.

To summarize, three factors act in favor of the creation
of an intermediary metastable state.

(1) The intermediary metastable and the stable states
are close in energy.

(2) The relevant order parameters for the intermediary
metastable and stable states are close in value.

(3) A high mobility of the initial metastable state com-
pared to the stable state enlarges the zone of external
variables for which an intermediary phase 1 occurs and
increases the velocity of the 10 front.

It is also possible to consider negative velocities
describing dissolution of phase 2 in a phase 0 matrix as
well as propagation or dissolution of phase O in a phase 2
matrix. The results are similar to those discussed previ-
ously. Which of the various dynamic events occurs in a
given system will depend on the initial experimental con-
ditions governing the quench.

IV. INTERACTION TERM

In the following we take for simplicity the mobility, the
elastic constant, and the position of the intermediary
state equal to 1.

We can define a “potential” F;; [which is the Lyapunov
function of Eq. (9) [8]] of a front separating the states i
and j with profile n;; as

2
dn;;

dz

Fy=["" dz . (12)

For the 02 front, discussed previously, by inserting the
solution (6), F, can be expressed as

fo(n,-j)+

Foy=Fy(zg;,215)+Fs+1(zg),2y5) .

Fy, represents the volume contribution of the free ener-
gy and is a function of the positions of the 01 and 12 in-
terfaces. The surface contribution Fg is a constant.
I(zy,,z,,) is the interaction term between the two inter-
faces, already introduced by other means [9] and of vital
importance. For example, recent experimental [10] and
theoretical [11] work on anisotropic surface melting has
been explained on the assumption of an interaction term.

The analytical solutions in (6) lead us to a new deriva-
tion for I(zy,;,2,,), which is found to be

—k(zy, —25)/2 —(25, =2, )/6;
I(zgy,zp)=Se % "277°=ge 01 12 b

, (13)
where §;=2(1+8)/&, is the characteristic length of the
interaction and S a positive constant. The introduction
of the interaction term leads to a new formulation for the
TDGL equation in the case of a two-front propagation.

Instead of the exact profile, we can investigate the evo-
lution of the positions z; and the velocities of the fronts
of n;; for n;=n;;(z—z;(¢)) in the limit of zo; —z,, > §,.
On integration of Eq. (1) and after some simple manipula-
tions (for details, see Ref. [12]), we find
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c dzg - dF(zg1,213)
1D dt dzm ’
(14)
c dzlz - dF(zOl’212)
D gy dz,,

F is the static energy described above, which can be writ-
ten as

F(zoy,z15)=Fg+z5(e;—ey)
+zm(e1 —e€y )+I(201,212 ) s
where e;=f,(n;) is the energy density associated with
the uniform phase i =0,1,2. Fg is the surface energy, in-
dependent of zy; and z,, in one dimension. Fg=vy,+7,

with y,; the interfacial energy between states i and j
defined as

‘y‘-j=f+w

—

2

dn;;
D | gy

dz

The interaction term I(zy;,z;,) is determined by the
spreading coefficient S which can be written in the form

S=Yn—Y12"Yo

where y, is the interfacial tension between the states 0
and 2 in the case §=0 (i.e., §=1) corresponding to
“disappearance” of the intermediary state and a simple
double-well potential.

¢p is the effective mobility of the one-dimensional sys-
tem,
2

2
+o [dnt o |dn”
Cip= dz= dz ,
1D fo dz f— w | dz
which after integration gives
) k(zy,—24,)/2
Cip=Ymt —“Zie Fr2 ol =7’12+§9 #1270/ .

It is now easy to obtain the same analytical results on
“dynamical splitting” discussed previously. Further-
more, we can present a different physical interpretation
of the phenomenon without the often used mechanical
analogy. In this interpretation, the interfaces can be con-
sidered as fictitious particles which are subject to
different forces. This kind of analogy has been used, for
example, in the study of kink-kink or kink-antikink col-
lisions of soliton waves [16]. In our study the interpreta-
tion is the following.

The volume free energy leads to a thermodynamic
force between the two interfaces. For b, >b,., we have
an attractive force which is in conflict with the repulsive
interaction I(zy;,z,;). An optimal profile can exist and
propagates with constant velocity v,y =dz,/dt
=dz,, /dt. From Eq. (14), the width of the front is found
to be

&=—In

"571[291_32"%]

When b; — b, the attractive force decreases and leads to
a large value of the width of the intermediary phase. Fi-
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n=0 state

[ n=1 state

Bl n=2 state

FIG. 8. System in droplet geometry where Ry, and R, are
the positions of the 01 and 12 fronts.

nally, for b,<b,,, the volume contribution gives a
second repulsive term and the two fronts propagate in-
dependently. The critical value of the control parameter
b,. corresponds to equality of the free energy differences
(e, —e;)=(eg—e;). When the free energy difference be-
tween the states 0 and 1 is higher than between the states
1 and 2, dynamical splitting occurs. We can also remark
that the presence of the interaction term in the effective
mobility reduces the speed of relaxation. Note that the
criterion for the appearance of the dynamical splitting is
given here for a system with equal mobilities, etc. A gen-
eralization to a more complex model can easily be per-
formed in the same formalism.

Following the same method [12] combined with work
of Chan [13], it is possible to extend to a system of drop-
let geometry (Fig. 8). The equations are in this case

crR2 dRo; _  dF3p(Ro,Rpp)
DT gy dR ’
(15)
, 4Ry, dF3p(Rg,Ry,)
¢ipR1, dr dR

The potential for the three-dimensional (3D) system is
fitted to the expression

F3D(R01,R12)=R%2(92_el )+R(3)1(el ’_eo)
+7RhL+YaRE

2
Roy TRy | —(Ry —R\y)22,
2

+S (16)

and c;p, is defined as before [12].

This model is valid in the case of R;; >>§, and in the
absence of thermal effects for a system not subject to heat
absorption (or emission). For large droplets, the surface
term can be neglected [13] and the results of one-
dimensional propagation are valid. The effect of the
spherical symmetry is evident in the existence of two crit-
ical radii for the two fronts. A static illustration is given
in Ref. [11] and an application to a dynamical system is
in progress. To illustrate this model, we plot in Fig. 9 the
dynamical behavior of an initial droplet characterized by
initial positions Ry, and R, of the 01 and 12 fronts, re-
spectively.
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{r R12 Ri12=Ro1

dR12_ 0
/ dt
/
/
/
/
4 (b)
(©) 4
/

/ -
13 Ro1

FIG. 9. Numerical solutions of the dynamical equation for a
fixed value of the free energy potential (fixed external parame-
ters). The two thick lines represent the two critical radii Rg;,
and R.. Four paths are plotted in R,,R,, space for four
different initial conditions. (a) The front tends toward the
asymptotic solution given by the one-dimensional case
(Rgy—R;=§). (b) The 12 front vanishes and the 01 front in-
creases in extension. This illustrates the case where the initial
conditions act to create a macroscopic region of the metastable
state. (c) The two fronts disappear; no production of the 1 or 2
state is possible. (d) As in the (a) case the fronts tend toward the
one-dimensional solution. In this case the position of the 12
front decreases to the value of the critical radius and then in-
creases to the asymptotic solution.

V. CONCLUSION

The analytical solution with the new external parame-
ters introduced in this work can be applied to a specific
example of a phase transition for which three phases
could exist and then related to experiment. For this pur-
pose, the introduction of a second-order parameter may
be necessary [14].

As discussed above, generalization of the problem to
systems of higher dimension (droplets) is possible. The

4 -fo(n)

(1)

(2)

FIG. 10. In the mechanical analogy — fo(n) is plotted. The
fictive particle starts at the bottom of the n, well. A third well
exists in n=n, [position (2)]. To fulfill the required boundary
condition the particle must arrive at (2) with a zero value of ve-
locity after passing position (1).

introduction of a nonuniform temperature field would be
more realistic [15] although the effect on the propagation
is generally small in most cases of experimental interest.

The idea of the interaction term between interfaces has
already been introduced in the case of surface melting
[17] and wetting transitions. The phenomenon described
in the present work is just the nonequilibrium version of
these phenomena as indicated by Tuckerman and
Bechhoefer [14]. To illustrate this point, we can show
how the model can be extended to the case of a surface
transition between two states in the presence of a sub-
strate or enclosing matrix (as on application of an exter-
nal field [18]): the order parameter and the derivative are
usually fixed at the boundary and the associated profile is
calculated from Eq. (1). Referring to the mechanical
analogy, we can see (Fig. 10) that fixing the values of n
and dn /dz in a point is equivalent to the definition of a
new third equilibrium state of the system at z— — w. By
definition of a third ‘“absorbed” state, the results of the
three-phase model with fixed position of one interface can
be applied and the surface transition can then be studied
as a function of the energy of the new state.
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